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r being the radius of the drop.J Forensic Sci 1998;43(6):1208–1212
The physical property, density, assumes a position of great

importance in the identification of pure liquids. When liquids areABSTRACT: A simple, novel, and rapid method for the determina-
available in bulk quantities, conventional methods (such as specifiction of density of microquantity liquids is described. The method

may be employed in forensic science when liquids sent for analysis gravity bottle, pyknometer, Westphal-balance (29–31)) may be
are available in microquantities (even up to 0.5 mL) for which den- employed to determine this physical constant. When liquids are
sity cannot be determined either by the capillary tube method, where available in small quantities and when neither the conventionalaccurate weighing is a problem, or by the other conventional meth-

methods nor the capillary tube method (where weighing is a prob-ods such as specific gravity bottle method, Pyknometer method, or
the Westphal-balance method. The retrieval of the sample is also lem) is adoptable, a new method is developed to determine the
possible in this method, which allows the analyst to carry out further density of microquantity liquids.
analysis.

Materials and Methods
KEYWORDS: forensic science, density, microquantity liquids,
rise of liquid drops, immiscible liquid column A specially improvised graduated glass cylindrical tube of inter-

nal diameter 0.05 m and height 1.5 m with a small side tube
attached to its bottom and sealed with a rubber septum; stop watch

Studies on the rise of liquid drops through an immiscible liquid (Racer), accurate to 0.05 s; Hamilton precision microsyringe, accu-
column have been carried out by several authors (1–28). The rate to 0.01 mL, and 27 liquids having considerable range of densi-
authors have previously dealt with the problem of rise of liquid ties (Table 1) were used.
drops with six variables, F, D, u, s, h and r alone (F-drag force; The liquids, ethylene glycol, water, chlorobenzene, and bromo-
D-diameter of the liquid drop; u-terminal velocity acquired by the benzene, which are immiscible with the corresponding drop liquids
liquid drop; h-viscosity of the liquid in the column; r-density of (Table 1), were selected as column liquids. Liquid drops of known
the liquid drop; s-density of the liquid in the column) to arrive at volume were gently injected at the bottom of the liquid column
an expression for the drag force, F, acting on the drop in rise using a graduated Hamilton Precision microsyringe. When the drop
through the method of dimensions. They suggested that the simple rises freely and vertically without oscillation, the terminal velocity
expression for the constant quantity S occurring in the process of u was determined by observing the time t required by the liquid
simplification of the drag force expression F may be used to deter- drop of radius r to cover the distance d between two graduations
mine the density r of the liquid drop (1). on the column. All the experiments were conducted at the room

The expression for the density r obtained (1) is temperature of 258C.

Results and Discussionr 4 $(2s ` l) 1 [l(l ` 4s)]1/2}/2 (1)

The 27 liquid drop-liquid pair systems studied are given in Table
where 1. In Table 2, only ten liquid drop-liquid pairs having three data

points each are presented to show that for liquid drops of different
radii of a given liquid pair system, r/u is a constant. The other 17l 4 S2 h/(r/u)3 (2)
liquid drop-liquid pair systems for which the experimental results
have been obtained satisfy the same. The values of (r/u)3/2/h1/2,

1 Professor and head, Department of Electronics and Instrumentation r1/2/(s 1 r), and S are given in Table 3. The value of S has been
Engineering, St. Peter’s Engineering College, Avadi, Chennai, India. found to be approximately constant for all liquid drop-liquid pair2 Scientific assistant, grade I, and research scholar, respectively, Foren- systems and its mean value is 0.313366 m21s2. Table 4 furnishessic Sciences Department, Chennai, India.

the observed density of the liquids, the density of the liquids esti-Received 11 Dec. 1997; and in revised form 13 April 1998; accepted
17 April 1998. mated from Eq 1 (using r/u and h (Table 1), S (mean) values),
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TABLE 1—Liquid drop—column liquid pair systems and their physical constants.

‘g’
S1. Liquid r s (s 1 r) ‘h’ (Nm21)
No. Liquid Drop Column kgm23 kgm23 kgm23 Nsm22 2 1023 r/u (s)

1. Hexane EG* 665.12 1108.00 442.88 0.01520 21.6 0.017192
2. Petrol EG* 715.38 1108.00 392.62 0.01520 16.7 0.018964
3. Heptane EG* 720.24 1108.00 387.76 0.01520 20.8 0.019244
4. Naphtha EG* 733.29 1108.00 374.71 0.01520 15.3 0.019708
5. MIBK EG* 792.85 1108.00 315.15 0.01520 3.1 0.022752
6. Kerosene EG* 797.22 1108.00 310.78 0.01520 11.9 0.022998
7. Diesel EG* 830.65 1108.00 277.35 0.01520 15.6 0.025111
8. Soap oil EG* 857.01 1108.00 250.99 0.01520 18.0 0.027218
9. Xylene EG* 857.50 1108.00 250.50 0.01520 13.9 0.027318

10. Benzene EG* 870.60 1108.00 237.40 0.01520 9.1 0.028376
11. Palm oil EG* 876.66 1108.00 231.34 0.01520 9.6 0.028816
12. Groundnut oil EG* 910.91 1108.00 197.09 0.01520 12.0 0.032461
13. Gingely oil EG* 915.85 1108.00 192.15 0.01520 12.3 0.033150
14. Coconut oil EG* 917.27 1108.00 190.73 0.01520 13.3 0.033273
15. Castor oil EG* 925.72 1108.00 182.28 0.01520 7.2 0.034431
16. Sandalwood oil EG* 960.20 1108.00 147.80 0.01520 14.1 0.040103
17. Heptane Water 720.37 1000.00 279.63 0.00100 38.7 0.009765
18. Cyclohexane Water 775.04 1000.00 224.96 0.00100 20.4 0.011578
19. Kerosene Water 797.34 1000.00 202.66 0.00100 43.8 0.012480
20. Soap oil Water 857.15 1000.00 142.85 0.00100 34.2 0.015956
21. Xylene Water 857.95 1000.00 142.05 0.00100 29.0 0.016010
22. Turpentine Water 860.03 1000.00 139.97 0.00100 41.5 0.016448
23. Toluene Water 860.89 1000.00 139.11 0.00100 39.7 0.016543
24. Benzene Water 870.78 1000.00 129.22 0.00100 35.0 0.017382
25. Iso-amylacetate Water 882.15 1000.00 117.85 0.00100 29.2 0.018537
26. Water Chlorobenzene 1000.00 1097.99 97.99 0.00071 46.1 0.019610
27. Ethylene glycol Bromobenzene 1108.00 1492.21 384.21 0.00085 11.2 0.008580

r 4 Density of liquid drop; s 4 density of column liquid; h 4 viscosity of column liquid; g 4 interfacial tension between liquid drop and liquid
in column; r 4 radius of liquid drop; u 4 terminal velocity of drop. (r/u) 4 Mean experimental values.

* Ethylene glycol.
r, s by specific gravity bottle; h by Ostwald viscometer; g by the method of drops.
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TABLE 2—Experimental data for liquid drop—liquid pair systems.

Liquid Drop- Volume of Distance Time Terminal Reynolds Eotvos Morton
Liquid Pair Drop V Radius of Drop Travelled d Taken Velocity u Number, Number Et Number,

Systems (mL) r (21024 m) (21022 m) t (secs) 2 1022 ms21 r/u (s) Re 2 1022 Mo

Hexane in EG* 0.5 4.9237 0.4 14.0 2.8571 0.01723 2.05 19.50
1 6.2035 0.4 11.0 3.6363 0.01705 3.28 30.96 1.8 2 1025

2 7.8159 0.4 8.8 4.5454 0.01719 5.17 49.15
Petrol in EG* 0.5 4.9237 0.4 15.4 2.5974 0.01895 1.86 22.38

1 6.2035 0.4 12.2 3.2786 0.01892 2.96 35.53 3.6 2 1025

2 7.8159 0.4 9.7 4.1237 0.01895 4.69 56.41
Heptane in EG* 0.5 4.9237 0.4 15.6 2.5641 0.01920 1.84 17.73

1 6.2035 0.4 12.4 3.2258 0.01923 2.91 28.15 1.8 2 1025

2 7.8159 0.4 9.9 4.0404 0.01934 4.60 44.69
Naphtha in EG* 0.5 4.9237 0.4 16.0 2.5000 0.01969 1.79 23.24

1 6.2035 0.4 12.7 3.1496 0.01969 2.84 36.89 4.4 2 1025

2 7.8159 0.4 10.1 3.9603 0.01973 4.51 58.56
MIBK in EG* 0.5 4.9237 0.4 18.5 2.1621 0.02277 1.55 97.55

1 6.2035 0.4 14.7 2.7210 0.02279 2.46 154.86 4.6 2 1023

2 7.8159 0.4 11.6 3.4482 0.02266 3.92 245.82
Kerosene in EG* 0.5 4.9237 0.4 18.7 2.1390 0.02301 1.53 24.83

1 6.2035 0.4 14.8 2.7027 0.02295 2.44 39.41 7.8 2 1025

2 7.8159 0.4 11.7 3.4188 0.02286 3.89 62.57
Diesel in EG* 0.5 4.9237 0.4 20.4 1.9607 0.02511 1.40 16.86

1 6.2035 0.4 16.2 2.4691 0.02512 2.23 26.76 3.0 2 1025

2 7.8159 0.4 12.8 3.1250 0.02501 3.56 42.48
Soap oil in EG* 0.5 4.9237 0.4 22.1 1.8099 0.02720 1.29 30.25

1 6.2035 0.4 17.6 2.2727 0.02729 2.05 21.03 1.8 2 1025

2 7.8159 0.4 13.9 2.8776 0.02716 3.27 33.39
Xylene in EG* 0.5 4.9237 0.4 22.25 1.7976 0.02739 1.29 17.07

1 6.2035 0.4 17.50 2.2857 0.02714 2.07 27.10 3.9 2 1025

2 7.8159 0.4 13.95 2.8674 0.02726 3.27 43.01
Benzene in EG* 0.5 4.9237 0.4 23.1 1.7316 0.02843 1.24 24.82

1 6.2035 0.4 18.3 2.1857 0.02838 1.97 39.41 1.3 2 1024

2 7.8159 0.4 14.5 2.7586 0.02833 3.14 62.56

* Ethylene glycol Re 4 suD/h
Et 4 g(s 1 r) D2/g
Mo 4 gh4 (s 1 r)/s2g3

r, s, h and g from Table 1.
g 9.8 ms22; D 4 2r.
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TABLE 3—Values of (r/u)1/2/h1/2 and r3/2/(s 1 r) and S.

S1. No. Liquid Drop Liquid Column (r/u)3/2/h1/2 r1/2/(s 1 r) S

1. Hexane EG* 0.018284 0.058232 0.313985
2. Petrol EG* 0.021182 0.068123 0.310938
3. Heptane EG* 0.021653 0.069211 0.312855
4. Naphtha EG* 0.022441 0.072267 0.310529
5. MIBK EG* 0.027836 0.089346 0.311553
6. Kerosene EG* 0.028289 0.090852 0.311375
7. Diesel EG* 0.032276 0.103915 0.310600
8. Soap oil EG* 0.036422 0.116637 0.312268
9. Xylene EG* 0.036623 0.116898 0.313290

10. Benzene EG* 0.038771 0.124287 0.311947
11. Palm oil EG* 0.039676 0.127986 0.310003
12. Groundnut oil EG* 0.047437 0.153134 0.309774
13. Gingely oil EG* 0.048956 0.157492 0.310848
14. Coconut oil EG* 0.049228 0.158792 0.310016
15. Castor oil EG* 0.051821 0.166917 0.310460
16. Sandalwood oil EG* 0.065139 0.209655 0.310696
17. Heptane Water 0.030515 0.095982 0.317924
18. Cyclohexane Water 0.039396 0.123753 0.318344
19. Kerosene Water 0.044088 0.139332 0.316424
20. Soap oil Water 0.063736 0.204950 0.310983
21. Xylene Water 0.064060 0.206200 0.310669
22. Turpentine Water 0.066707 0.209518 0.318383
23. Toluene Water 0.067285 0.210918 0.319010
24. Benzene Water 0.072469 0.228362 0.317343
25. Iso-amylacetate Water 0.079810 0.252024 0.316676
26. Water Chlorobenzene 0.103059 0.322714 0.319351
27. Ethylene glycol Bromobenzene 0.027260 0.086636 0.314650

Mean 0.313366

* Ethylene glycol; (r/u), h, r and (s 1 r) from Table 1.
S 4 [(r/u)3/2/h1/2]/[r1/2/(s 1 r)].

and the estimated error in percent. It may be seen from this table
that the estimated and the observed density values are comparable,TABLE 4—Comparison of density values and estimated error in
with an estimated error less than 0.5%. This confirms that thepercent.
rising drop method may be successfully employed to determine

Density, r, kgm23
the density of a microsample of liquid for which density cannot be

Estimated Estimated determined by any other conventional method. The only unknown
S1. No. Liquid Drop Observed* from Eq 1 Error in % quantity to be determined for estimating the density of a liquid

drop from Eq 1 is r/u. This may be accomplished in one or two1. Hexane 665.12 665.77 10.098
minutes. Thus it provides a rapid means of determining the density2. Petrol 715.38 712.98 0.335
of liquids.3. Heptane 720.24 719.74 0.069

4. Naphtha 733.29 730.61 0.365 The minimum amount of liquid sample required for this method
5. MIBK 792.85 791.32 0.193 is less than 1 mL and therefore it provides a solution to the analyst
6. Kerosene 797.22 795.56 0.208

who prefers, as far as possible, to preserve the original microsample7. Diesel 830.65 828.53 0.255
of a liquid for identification and confirmation through other analyt-8. Soap oil 857.01 856.24 0.090

9. Xylene 857.50 857.44 0.007 ical means apart from density determination.
10. Benzene 870.60 869.65 0.109 The measurement of weight of the liquid drop is not involved in
11. Palm oil 876.66 874.45 0.254 this method and hence the availability of a high-precision balance is12. Groundnut oil 910.91 908.85 0.226

not an essential requirement as in the case of other conventional13. Gingely oil 915.85 914.44 0.154
methods, viz., specific-gravity bottle method, pyknometer method,14. Coconut oil 917.27 915.41 0.203

15. Castor oil 925.72 924.17 0.167 Wesptphal-balance method (29), for establishing the accurate den-
16. Sandalwood oil 960.20 959.02 0.123 sity value.
17. Heptane 720.37 723.73 10.466

The added advantage of this method is that the liquid drop18. Cyclohexane 775.04 778.12 10.397
injected at the bottom can be retrieved from the top of the liquid19. Kerosene 797.34 799.08 10.218

20. Soap oil 857.15 856.14 0.118 column using a microsyringe or filter paper for further analysis as
21. Xylene 857.95 856.14 0.133 the drop liquid and the column liquid are immiscible.
22. Turpentine 860.03 862.07 10.237 Infrared spectrophotometry, gas-chromatography, etc., are the23. Toluene 860.89 863.17 10.265

powerful tools used in the identification of a microsample of24. Benzene 870.78 872.29 10.173
unknown liquid. But such sophisticated and expensive equipment25. Iso-amylacetate 882.15 883.31 10.131

26. Water 1000.00 1001.75 10.175 is not available in many operational laboratories. At this juncture,
27. Ethylene glycol 1108.00 1109.33 10.120 the simple and rapid method presented here may be helpful to

those who prefer to derive preliminary information about the sam-* From Table 1.
ple through density. However, one should consider the possibility
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